導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)及經(jīng)典習(xí)題解答
用心輔導(dǎo)中心高中數(shù)學(xué)
導(dǎo)數(shù)知識(shí)點(diǎn)及習(xí)題講解
1.導(dǎo)數(shù)(導(dǎo)函數(shù)的簡稱)的定義:設(shè)x0是函數(shù)yf(x)定義域的一點(diǎn),如果自變
f(x0x)f(x0)量x在x0處有增量x,則函數(shù)值y也引起相應(yīng)的增量yyxf(x0x)f(x0)xlimx0;比值
稱為函數(shù)yf(x)在點(diǎn)x0到x0x之間的平均變化率;如果
f(x)極限
yxlimx0f(x0x)f(x0)x存在,則稱函數(shù)y"在點(diǎn)x0處可導(dǎo),并把這
y|xx"0個(gè)極限叫做
limx0yf(x)在
x0處的導(dǎo)數(shù),記作.,yf(x)"f(x0)或,即
f(x0)"=
yxlimx0f(x0x)f(x0)x②以知函數(shù)y
2.函數(shù)y⑴函數(shù)yf(x)定義域?yàn)锳的定義域?yàn)锽,則
A與B關(guān)系為AB.
f(x)在點(diǎn)x0處連續(xù)與點(diǎn)x0處可導(dǎo)的關(guān)系:
f(x)在點(diǎn)x0f(x)在點(diǎn)x0處連續(xù)是yf(x)在點(diǎn)x0處可導(dǎo)的必要不充分條件.
f(x)可以證明,如果y事實(shí)上,令xx0于是
xx0處可導(dǎo),那么y相當(dāng)于x0.
點(diǎn)x0處連續(xù).
x,則xx0limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]x0x0
f(x0)f(x0)0f(x0)f(x0)."lim[x0f(x0x)f(x0)xxf(x0)]limf(x0x)f(x0)xlimlimx0x0x0⑵如果yf(x)點(diǎn)x0處連續(xù),那么y0f(x)在點(diǎn)x0處可導(dǎo),是不成立的.
0例:f(x)|x|在點(diǎn)x0處連續(xù),但在點(diǎn)x0處不可導(dǎo)
注:①可導(dǎo)的奇函數(shù)函數(shù)其導(dǎo)函數(shù)為偶函數(shù).
②可導(dǎo)的偶函數(shù)函數(shù)其導(dǎo)函數(shù)為奇函數(shù).3.導(dǎo)數(shù)的幾何意義:函數(shù)yf(x)在點(diǎn)x0處的導(dǎo)數(shù)的幾何意義就是曲線yf(x)f(x)在點(diǎn)(x0,f(x))"處的切線,切線
的斜率,也就是說,曲線y方程為
yy0f(x)(xx0)."在點(diǎn)P(x0,f(x))處的切線的斜率是
f(x0)4.求導(dǎo)數(shù)的四則運(yùn)算法則:
(uv)uv"""""yf1(x)f2(x)...fn(x)yf1(x)f2(x)...fn(x)""""""""
(uv)vuvu(cv)cvcvcvuv""(c為常數(shù))
vu"vuv2"(v0)
②若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).I.C"0(C"為常數(shù))(sinx)cosx
(arcsinx)"11x2
(x)nxn"n1"(nR)(cosx)sinx
(arccosx)"11x2
II.
(lnx)"1x
x(logax)"1xlogae
(arctanx)x"1211
(ex)e"x"x(a)alna
(arccotx)x"21
5.復(fù)合函數(shù)的求導(dǎo)法則:fx"((x))6.函數(shù)單調(diào)性:
f(u)(x)""或
y"xy"uu"x
⑴函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)yyf(x)為增函數(shù);如果f(x)"f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果
f(x)f(x)">0,則
<0,則y為減函數(shù)
y2x3注:①f(x)0是f(x)遞增的充分條件,但不是必要條件,如在(,)上
并不是都有f(x)0,有一個(gè)點(diǎn)例外即x=0時(shí)f(x)=0,同樣f(x)0是f(x)遞減的充分非必要條件.
7.極值的判別方法:(極值是在x0附近所有的點(diǎn),都有f(x)<f(x0),則f(x0)是函數(shù)f(x)的極大值,極小值同理)當(dāng)函數(shù)f(x)在點(diǎn)x0處連續(xù)時(shí),①如果在x0附近的左側(cè)②如果在x0附近的左側(cè)
f(x)"">0,右側(cè)<0,右側(cè)
f(x)""<0,那么f(x0)是極大值;>0,那么f(x0)是極小值
f(x)f(x)例1.yf(x)x2x1處可導(dǎo),則abaxbx1在x1
例2.已知f(x)在x=a處可導(dǎo),且f′(a)=b,求下列極限:(1)limf(a3h)f(ah)22;(2)h0hlimf(ah)f(a)
h0h
1.(全國卷10)函數(shù)y=xcosx-sinx在下面哪個(gè)區(qū)間內(nèi)是增函數(shù)()
A(3)B(π,2π)C(
3,52,222)D(2π,3)
2.已知函數(shù)f(x)=ax2+c,且f(1)=2,則a的值為()A.1B.2C.-1D.0
3f(x)與g(x)是定義在R上的兩個(gè)可導(dǎo)函數(shù),若f(x),g(x)滿足f"(x)g"(x),則f(x)與g(x)滿足()
Af(x)2g(x)Bf(x)g(x)為常數(shù)函數(shù)
Cf(x)g(x)0Df(x)g(x)為常數(shù)函數(shù)
4.函數(shù)y=x3+x的遞增區(qū)間是()
A(,1)B(1,1)C(,)D(1,)
7.曲線f(x)=x3+x-2在p0處的切線平行于直線y=4x-1,則p0點(diǎn)的坐標(biāo)為(A(1,0)B(2,8)
C(1,0)和(1,4)D(2,8)和(1,4)
8.函數(shù)y13xx3有()
A.極小值-1,極大值1B.極小值-2,極大值3C.極小值-1,極大值3D.極小值-2,極大值2
9對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x1)f"(x)0,則必有()
Af(0)f(2)2f(1)Bf(0)f(2)2f(1)Cf(0)f(2)2f(1)Df(0)f(2)2f(1)
11.函數(shù)yx3x2x的單調(diào)區(qū)間為___________________________________.
)
13.曲線yx34x在點(diǎn)(1,3)處的切線傾斜角為__________.
17.已知f(x)ax4bx2c的圖象經(jīng)過點(diǎn)(0,1),且在x1處的切線方程是yx2,請(qǐng)解答下列問題:
(1)求yf(x)的解析式;(2)求yf(x)的單調(diào)遞增區(qū)間。
318.已知函數(shù)f(x)ax32(a2)x6x3
2(1)當(dāng)a2時(shí),求函數(shù)f(x)極小值;(2)試討論曲線yf(x)與x軸公共點(diǎn)的個(gè)數(shù)。
19.已知函數(shù)f(x)x3ax2bxc在x(1)求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x[1,2],不等式f(x)c2恒成立,求c的取值范圍
23與x1時(shí)都取得極值
擴(kuò)展閱讀:導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)及經(jīng)典習(xí)題解答
導(dǎo)數(shù)知識(shí)點(diǎn)及習(xí)題講解
1.導(dǎo)數(shù)(導(dǎo)函數(shù)的簡稱)的定義:設(shè)x0是函數(shù)yf(x)定義域的一點(diǎn),如果自變量x在x0處有增量x,則函數(shù)值y也引起相應(yīng)的增量yf(x0x)f(x0);比值
yf(x0x)f(x0)稱為函數(shù)yf(x)在點(diǎn)x0到x0x之間的平均變化率;如果極xx限limf(x0x)f(x0)y存在,則稱函數(shù)yf(x)在點(diǎn)x0處可導(dǎo),并把這個(gè)limx0xx0x極限叫做yf(x)在x0處的導(dǎo)數(shù),記作f"(x0)或y"|xx0,即
f"(x0)=limf(x0x)f(x0)y.limx0xx0x②已知函數(shù)yf(x)定義域?yàn)锳,yf"(x)的定義域?yàn)锽,則A與B關(guān)系為AB.
2.函數(shù)yf(x)在點(diǎn)x0處連續(xù)與點(diǎn)x0處可導(dǎo)的關(guān)系:
⑴函數(shù)yf(x)在點(diǎn)x0處連續(xù)是yf(x)在點(diǎn)x0處可導(dǎo)的必要不充分條件.可以證明,如果yf(x)在點(diǎn)x0處可導(dǎo),那么yf(x)點(diǎn)x0處連續(xù).事實(shí)上,令xx0x,則xx0相當(dāng)于x0.于是limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]
xx0x0x0lim[x0f(x0x)f(x0)f(x0x)f(x0)xf(x0)]limlimlimf(x0)f"(x0)0f(x0)f(x0).x0x0x0xx⑵如果yf(x)點(diǎn)x0處連續(xù),那么yf(x)在點(diǎn)x0處可導(dǎo),是不一定成立的.例:f(x)|x|在點(diǎn)x00處連續(xù),但在點(diǎn)x00處不可導(dǎo)
注:①可導(dǎo)的奇函數(shù)函數(shù)其導(dǎo)函數(shù)為偶函數(shù).
②可導(dǎo)的偶函數(shù)函數(shù)其導(dǎo)函數(shù)為奇函數(shù).3.導(dǎo)數(shù)的幾何意義:
函數(shù)yf(x)在點(diǎn)x0處的導(dǎo)數(shù)的幾何意義就是曲線yf(x)在點(diǎn)(x0,f(x))處的切線的斜率,也就是說,曲線yf(x)在點(diǎn)P(x0,f(x))處的切線的斜率是f"(x0),切線方程為yy0f"(x)(xx0).
4.求導(dǎo)數(shù)的四則運(yùn)算法則:
(uv)"u"v"yf1(x)f2(x)...fn(x)y"f1"(x)f2"(x)...fn"(x)
(uv)"vu"v"u(cv)"c"vcv"cv"(c為常數(shù))
vu"v"uu(v0)2vv"②若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它
們的和、差、積、商不一定不可導(dǎo).
)"coxs(arcsx)i"nI.C"0(C為常數(shù))(sixnx)o"s(xn)"nxn1(nR)(cosx)"sinx(arcc11x2
11x2
1"11"(arctx)anII.(lnx)(loagx)loage
xxx21"(ex)"ex(ax)"axlna(arccoxt)"5.復(fù)合函數(shù)的求導(dǎo)法則:fx"((x))f"(u)"(x)或y"xy"uu"x6.函數(shù)單調(diào)性:
1x21
⑴函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)yf(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果f"(x)>0,則
yf(x)為增函數(shù);如果f"(x)<0,則yf(x)為減函數(shù)
注:①f(x)0是f(x)遞增的充分條件,但不是必要條件,如y2x3在(,)上并不是都有f(x)0,有一個(gè)點(diǎn)例外即x=0時(shí)f(x)=0,同樣f(x)0是f(x)遞減的充分非必要條件.
7.極值的判別方法:(極值是在x0附近所有的點(diǎn),都有f(x)<f(x0),則f(x0)是函數(shù)f(x)的極大值,極小值同理)當(dāng)函數(shù)f(x)在點(diǎn)x0處連續(xù)時(shí),
①如果在x0附近的左側(cè)f"(x)>0,右側(cè)f"(x)<0,那么f(x0)是極大值;②如果在x0附近的左側(cè)f"(x)<0,右側(cè)f"(x)>0,那么f(x0)是極小值
yf(x)x2例1.x11處可導(dǎo),則ab
axbx1在x
例2.已知f(x)在x=a處可導(dǎo),且f′(a)=b,求下列極限:
(1)limf(a3h)f(ah)f(ah2)2h;(2)limf(a)0h
h0h
1.(全國卷10)函數(shù)y=xcosx-sinx在下面哪個(gè)區(qū)間內(nèi)是增函數(shù)()
A(32,2)B(π,2π)C(
32,52)D(2π,3)
2.已知函數(shù)f(x)=ax2
+c,且f(1)=2,則a的值為()
A.1B.2C.-1D.0
3f(x)與g(x)是定義在R上的兩個(gè)可導(dǎo)函數(shù),若f(x),g(x)滿足f"(x)g"(x),則f(x)與g(x)滿足()
Af(x)2g(x)Bf(x)g(x)為常數(shù)函數(shù)
Cf(x)g(x)0Df(x)g(x)為常數(shù)函數(shù)
4.函數(shù)y=x3+x的遞增區(qū)間是()
A(,1)B(1,1)C(,)D(1,)
7.曲線f(x)=x3+x-2在p0處的切線平行于直線y=4x-1,則p0點(diǎn)的坐標(biāo)為(A(1,0)B(2,8)
C(1,0)和(1,4)D(2,8)和(1,4)
8.函數(shù)y13xx3有()
A.極小值-1,極大值1B.極小值-2,極大值3
C.極小值-1,極大值3D.極小值-2,極大值2
9對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x1)f"(x)0,則必有()
Af(0)f(2)2f(1)Bf(0)f(2)2f(1)Cf(0)f(2)2f(1)Df(0)f(2)2f(1)
11.函數(shù)yx3x2x的單調(diào)區(qū)間為___________________________________.
3)
13.曲線yx4x在點(diǎn)(1,3)處的切線傾斜角為__________.
17.已知f(x)axbxc的圖象經(jīng)過點(diǎn)(0,1),且在x1處的切線方程是yx2,請(qǐng)解答下列問題:
(1)求yf(x)的解析式;(2)求yf(x)的單調(diào)遞增區(qū)間。
18.已知函數(shù)f(x)ax34233(a2)x26x32(1)當(dāng)a2時(shí),求函數(shù)f(x)極小值;(2)試討論曲線yf(x)與x軸公共點(diǎn)的個(gè)數(shù)。
3219.已知函數(shù)f(x)xaxbxc在x2與x1時(shí)都取得極值3(1)求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x[1,2],不等式f(x)c恒成立,求c的取值范圍
2
友情提示:本文中關(guān)于《導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)及經(jīng)典習(xí)題解答》給出的范例僅供您參考拓展思維使用,導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)及經(jīng)典習(xí)題解答:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。