高二數(shù)學期末復習知識點總結
高二數(shù)學期末復習知識點總結:
一、直線與圓:
1、直線的傾斜角的范圍是[0,)
在平面直角坐標系中,對于一條與x軸相交的直線l,如果把x軸繞著交點按逆時針方向轉(zhuǎn)到和直線l重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線l與x軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。3、直線方程:⑴點斜式:直線過點(x0,y0)斜率為k,則直線方程為
yy0k(xx0),⑵斜截式:直線在y軸上的截距為b和斜率k,則直線方程為ykxb4、l1:yk1xb1,l2:yk2xb2,①l1∥l2k1k2,b1b2;②l1l2k1k21.
直線l1:A1xB1yC15、點P(x0,y0)到直線兩條平行線
0與直線l2:A2xB2yC20的位置關系:(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
AxByC0的距離公式dAx0By0CAB22;
AB222226、圓的標準方程:(xa)(yb)r.⑵圓的一般方程:xyDxEyF0
注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與x軸垂直的直線.8、直線與圓的位置關系,通常轉(zhuǎn)化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①dr相離②dr相切③dr相交
AxByC10與AxByC20的距離是dC1C222
9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構
成直角三角形)直線與圓相交所得弦長|AB|2r2d2二、圓錐曲線方程:
1、橢圓:①方程
x2y2
21(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③2abcb2222
e=12④長軸長為2a,短軸長為2b,焦距為2c;a=b+c;aax2y22、雙曲線:①方程221(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a三、直線、平面、簡單幾何體:
1、學會三視圖的分析:2、斜二測畫法應注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o"x"、o"y"、使∠x"o"y"=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=2rh;③體積:V=S底h⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=rl;③體積:V=⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=(r⑷球體:①表面積:S=4R2;②體積:V=
1S3底
h:
r")l
43R34、位置關系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構造三角形;⑵直線與平面所成的角:直線與射影所成的角
四、導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)
1、導數(shù)的定義:
f(x)在點x0處的導數(shù)記作yxx0f(x0)limf(x0x)f(x0)xx0.
2.導數(shù)的幾何物理意義:曲線
/yf(x)在點P(x0,f(x0))處切線的斜率
//①k=f(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s(t)表示即時速度。a=v(t)表示加速度。3.常見函數(shù)的導數(shù)公式:①C⑤(ax""n"n10;②(x)nx;③(snix)"cosx(cosx)"snix;;⑧(ln)axlna;⑥(ex)"ex;⑦(logax)"1xlnax)"1。x4.導數(shù)的四則運算法則:(uv)uv;(uv)uvuv;(5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)為增函數(shù);如果
uuvuv);2vvyf(x)在某個區(qū)間內(nèi)可導,如果f(x)0,那么f(x)f(x)0,那么f(x)為減函數(shù);
注意:如果已知f(x)為減函數(shù)求字母取值范圍,那么不等式f(x)0恒成立。
(2)求極值的步驟:
f(x);
②求方程f(x)0的根;
③列表:檢驗f(x)在方程f(x)0根的左右的符號,如果左正右負,那么函數(shù)yf(x)在這個根處取得極大值;如果左負右正,那么函數(shù)yf(x)在這個根處取得極小值;
①求導數(shù)
(3)求可導函數(shù)最大值與最小值的步驟:求
f(x)0的根;把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。2、注意命題的否定與否命題的區(qū)別:命題pq否定形式是pq;否命題是pq.命題“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.
3、邏輯聯(lián)結詞:
⑴且(and):命題形式pq;pqpqpqp⑵或(or):命題形式pq;真真真真假⑶非(not):命題形式p.真假假真假假真假真真假假假假真
“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”4、充要條件
由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。全稱命題p:xM,p(x);特稱命題p:xM,p(x);
全稱命題p的否定p:xM,p(x)。特稱命題p的否定p:xM,p(x);
考前寄語:①先易后難,先熟后生;②一慢一快:審題要慢,做題要快;③不能小題難做,小題大做,而要小題小做,小題巧做;④我易人易我不大意,我難人難我不畏難;⑤考試不怕題不會,就怕會題做不對;⑥基礎題拿滿分,中檔題拿足分,難題力爭多得分,似曾相識題力爭不失分;⑦對數(shù)學解題有困難的考生的建議:立足中下題目,力爭高上水平,有時“放棄”是一種策略.
擴展閱讀:高二數(shù)學期末復習知識點總結
高二數(shù)學期末復習知識點總結
一、直線與圓:
1、直線的傾斜角的范圍是[0,)
在平面直角坐標系中,對于一條與x軸相交的直線l,如果把x軸繞著交點按逆時針方向轉(zhuǎn)到和直線l重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線l與x軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。3、直線方程:⑴點斜式:直線過點(x0,y0)斜率為k,則直線方程為yy0k(xx0),⑵斜截式:直線在y軸上的截距為b和斜率k,則直線方程為ykxb
4、l1:yk1xb1,l2:yk2xb2,①l1∥l2k1k2,b1b2;②l1l2k1k21.直線l1:A1xB1yC10與直線l2:A2xB2yC20的位置關系:(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=05、點P(x0,y0)到直線AxByC0的距離公式dAx0By0CAB22;
兩條平行線AxByC10與AxByC20的距離是d2222C1C2AB222
6、圓的標準方程:(xa)(yb)r.⑵圓的一般方程:xyDxEyF0注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與x軸垂直的直線.8、直線與圓的位置關系,通常轉(zhuǎn)化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①dr相離②dr相切③dr相交
9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構
成直角三角形)直線與圓相交所得弦長|AB|2rd22
二、圓錐曲線方程:
1、橢圓:①方程e=
ca1ba22
xa22yb221(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③
④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
xa222、雙曲線:①方程e=
ca1ba22yb221(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a三、直線、平面、簡單幾何體:
1、學會三視圖的分析:2、斜二測畫法應注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o"x"、o"y"、使∠x"o"y"=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=2rh;③體積:V=S底h⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=rl;③體積:V=⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=(rr)l⑷球體:①表面積:S=4R2;②體積:V=
"13S底h:
434、位置關系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構造三角形;⑵直線與平面所成的角:直線與射影所成的角
3R四、導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)
1、導數(shù)的定義:f(x)在點x0處的導數(shù)記作yxx0f(x0)limf(x0x)f(x0)x.
x02.導數(shù)的幾何物理意義:曲線yf(x)在點P(x0,f(x0))處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。3.常見函數(shù)的導數(shù)公式:①C0;②(x)nx⑤(a)alna;⑥(e)e;⑦(logx"x"n"n1;③ns(ix)cos""xc(os1xx)nsi。
"x;
x"xax)"1xlna;⑧(lnx)uuvuv4.導數(shù)的四則運算法則:(uv)uv;(uv)uvuv;();2vv5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)yf(x)在某個區(qū)間內(nèi)可導,如果f(x)0,那么f(x)為增函數(shù);如果f(x)0,那么f(x)為減函數(shù);
注意:如果已知f(x)為減函數(shù)求字母取值范圍,那么不等式f(x)0恒成立。(2)求極值的步驟:①求導數(shù)f(x);
②求方程f(x)0的根;
③列表:檢驗f(x)在方程f(x)0根的左右的符號,如果左正右負,那么函數(shù)yf(x)在這個根處取得極大值;如果左負右正,那么函數(shù)yf(x)在這個根處取得極小值;(3)求可導函數(shù)最大值與最小值的步驟:
求f(x)0的根;把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。2、注意命題的否定與否命題的區(qū)別:命題pq否定形式是pq;否命題是
“p且q”的否定是“p或q”.pq.命題“p或q”的否定是“p且q”;
3、邏輯聯(lián)結詞:
⑴且(and):命題形式pq;pqpqpqp⑵或(or):命題形式pq;真真真真假⑶非(not):命題形式p.真假假真假假真假真真假假假假真
“或命題”的真假特點是“一真即真,要假全假”;
“且命題”的真假特點是“一假即假,要真全真”;
“非命題”的真假特點是“一真一假”4、充要條件
由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。全稱命題p:xM,p(x);特稱命題p:xM,p(x);
全稱命題p的否定p:xM,p(x)。特稱命題p的否定p:xM,p(x);
考前寄語:①先易后難,先熟后生;②一慢一快:審題要慢,做題要快;③不能小題難做,小題大做,而要小題小做,小題巧做;④我易人易我不大意,我難人難我不畏難;⑤考試不怕題不會,就怕會題做不對;⑥基礎題拿滿分,中檔題拿足分,難題力爭多得分,似曾相識題力爭不失分;⑦對數(shù)學解題有困難的考生的建議:立足中下題目,力爭高上水平,有時“放棄”是一種策略.
友情提示:本文中關于《高二數(shù)學期末復習知識點總結》給出的范例僅供您參考拓展思維使用,高二數(shù)學期末復習知識點總結:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。