初中數(shù)學(xué)競賽培訓(xùn)總結(jié)
數(shù)學(xué)競賽輔導(dǎo)總結(jié)
一、主要成績
在學(xué)校領(lǐng)導(dǎo)的正確領(lǐng)導(dǎo)下,本人按照學(xué)年初制定的輔導(dǎo)計(jì)劃加以實(shí)施,并不斷加以充實(shí)和完善,積極進(jìn)行輔導(dǎo)改革,悉心研討和實(shí)踐,旨在如何最大限度的調(diào)動(dòng)學(xué)生的主動(dòng)性,充分發(fā)揮學(xué)生的主體作用。經(jīng)過師生的共同努力,最終獲得了國家級(jí)數(shù)學(xué)三等獎(jiǎng),二、具體做法
數(shù)學(xué)競賽是青少年科學(xué)素質(zhì)教育的一種不可忽視的方式,是發(fā)現(xiàn)人才、選拔人才、培養(yǎng)人才的一種有效途徑,成為現(xiàn)代數(shù)學(xué)課外教育的一個(gè)重要組成部分。(一)選苗
1、摸底篩選:首先,了解學(xué)生中的奧數(shù)選手和思維敏捷、解題速度快的學(xué)生,其次,在期初進(jìn)行一次摸底考試,把成績優(yōu)異者和了解到的兩類學(xué)生結(jié)合考慮,從中選出50人組成課外興趣小組。2、期中觀察篩選:由于初二到初三是一個(gè)飛躍階段,學(xué)生變化較大,初二基礎(chǔ)好,到初三也有右能不適應(yīng),初二不怎么好,升入初三后,隨著環(huán)境、年齡的改變,可能會(huì)脫穎而出,初三第一學(xué)期教師要細(xì)心觀察、分析、特色合適的人選。從第二學(xué)期開始,對(duì)興趣小組進(jìn)行調(diào)整。人選的基本要求:(1)踏實(shí)認(rèn)真肯吃苦;(2)勇于拼搏有競爭意識(shí);(3)思維敏捷、解題速度快,(4)學(xué)習(xí)成績中等偏上。(二)、擇材1、所選輔導(dǎo)教材要求淺顯易懂,技巧性強(qiáng),方法別具一格,也有一定的權(quán)威性,不斷充實(shí)一些教材,雜志作參考,以取百家之長2、競賽輔導(dǎo)例題、習(xí)題的選擇應(yīng)注意針對(duì)性、階梯性、典型性、多解性、靈活性。
1)針對(duì)性:一是針對(duì)學(xué)生實(shí)際,在學(xué)生可接受的基礎(chǔ)上加深加寬,不能盲目拔高。
2)階梯性:從易到難,由基礎(chǔ)知識(shí)訓(xùn)練到技能技巧的培養(yǎng),層層遞進(jìn)。
3)典型性:具有代表性,能代表一類題型,有舉一反三的作用,吃透幾個(gè)題,就能駕馭一大批題。
4)多解性:這里的“解”,包含兩層意思,一是一題有多種解法,從不同的角度利用不同的知識(shí),獲得相同的結(jié)果。
5)靈活性:題型靈活多變,技巧性強(qiáng),往往用常規(guī)的方法不能解或解法很繁,而用某種特殊方法解卻易如反掌。(三)、輔導(dǎo)
1、時(shí)間:一般每星期進(jìn)行兩次集體輔導(dǎo)。分散時(shí)間,分散教材,做到步步扎穩(wěn),層層落實(shí)。定時(shí)布置、檢查,批改數(shù)學(xué)競賽練習(xí)。2、方法:(1)制定輔導(dǎo)計(jì)劃,多詢問,多督促,多鼓勵(lì),多指導(dǎo)。指導(dǎo)他們看一些競賽書籍與雜志,積極參加各家雜志舉辦的數(shù)學(xué)競賽;給他們指導(dǎo)解題方法與技巧。對(duì)這部分學(xué)生,鼓勵(lì)他們自學(xué),提前完成課堂任務(wù),抽出一定的時(shí)間,讓他們越級(jí)聽課,越級(jí)參賽。(2)變式。設(shè)置變式訓(xùn)練,使學(xué)生舉一反三,一題多變,多題一解,活躍課堂氣氛,提高分類、比較、歸納能力,會(huì)收到事半功倍之效果。
(3)專題。根據(jù)教材特點(diǎn)和學(xué)生的實(shí)際情況,定期設(shè)置重點(diǎn)課題進(jìn)行專題教學(xué)。如“應(yīng)用題”、“全等三角形”、“根與系數(shù)關(guān)系”等等,以期突出重點(diǎn),攻破難點(diǎn)。
(4)、競賽。定期進(jìn)行課堂小組競賽,一是檢查學(xué)生培訓(xùn)情況。二是表彰成績好的學(xué)生,以提高學(xué)生的學(xué)習(xí)興趣和競爭意識(shí)。這也可以作為一種參賽學(xué)習(xí)。
(5)、參賽前進(jìn)行心理素質(zhì)、應(yīng)試策略、典型的重要解題方法,數(shù)學(xué)思想、數(shù)學(xué)原理等輔導(dǎo)。使之有良好的心理準(zhǔn)備,臨場時(shí)高水平和超水平地發(fā)揮。
數(shù)學(xué)競賽,作為一種智力、能力和美的競賽,豐富了學(xué)生的課外活動(dòng)內(nèi)容,訓(xùn)練了學(xué)生的心理素質(zhì),激發(fā)了學(xué)生的上進(jìn)心和創(chuàng)造性思維。
擴(kuò)展閱讀:初中數(shù)學(xué)競賽專題培訓(xùn)(18):歸納與發(fā)現(xiàn)
鼎吉教育(DinjEducation)中小學(xué)生課外個(gè)性化輔導(dǎo)中心資料初中數(shù)學(xué)競賽專題培訓(xùn)講練
初中數(shù)學(xué)競賽專題培訓(xùn)第十八講歸納與發(fā)現(xiàn)
歸納的方法是認(rèn)識(shí)事物內(nèi)在聯(lián)系和規(guī)律性的一種重要思考方法,也是數(shù)學(xué)中發(fā)現(xiàn)命題與發(fā)現(xiàn)解題思路的一種重要手段.這里的歸納指的是常用的經(jīng)驗(yàn)歸納,也就是在求解數(shù)學(xué)問題時(shí),首先從簡單的特殊情況的觀察入手,取得一些局部的經(jīng)驗(yàn)結(jié)果,然后以這些經(jīng)驗(yàn)作基礎(chǔ),分析概括這些經(jīng)驗(yàn)的共同特征,從而發(fā)現(xiàn)解題的一般途徑或新的命題的思考方法.下面舉幾個(gè)例題,以見一般.
例1如圖2-99,有一個(gè)六邊形點(diǎn)陣,它的中心是一個(gè)點(diǎn),算作第一層;第二層每邊有兩個(gè)點(diǎn)(相鄰兩邊公用一個(gè)點(diǎn));第三層每邊有三個(gè)點(diǎn),這個(gè)六邊形點(diǎn)陣共有n層,試問第n層有多少個(gè)點(diǎn)?這個(gè)點(diǎn)陣共有多少個(gè)點(diǎn)?
分析與解(1)在圖2-100中,設(shè)以P點(diǎn)為公共點(diǎn)的圓有1,2,3,4,5個(gè)(取這n個(gè)特定的圓),觀察平面被它們所分割成的平面區(qū)域有多少個(gè)?為此,我們列出表18.1.(2)這n個(gè)圓共有多少個(gè)交點(diǎn)?
(1)這n個(gè)圓把平面劃分成多少個(gè)平面區(qū)域?
分析與解我們來觀察點(diǎn)陣中各層點(diǎn)數(shù)的規(guī)律,然后歸納出點(diǎn)陣共有的點(diǎn)數(shù).
S2-S1=2,
第一層有點(diǎn)數(shù):1;
S3-S2=3,
第二層有點(diǎn)數(shù):1×6;
S4-S3=4,
第三層有點(diǎn)數(shù):2×6;
S5-S4=5,
第四層有點(diǎn)數(shù):3×6;
由此,不難推測
第n層有點(diǎn)數(shù):(n-1)×6.
Sn-Sn-1=n.
因此,這個(gè)點(diǎn)陣的第n層有點(diǎn)(n-1)×6個(gè).n層共有點(diǎn)數(shù)為
由表18.1易知
把上面(n-1)個(gè)等式左、右兩邊分別相加,就得到
Sn-S1=2+3+4++n,
因?yàn)镾1=2,所以
例2在平面上有過同一點(diǎn)P,并且半徑相等的n個(gè)圓,其中任何兩個(gè)圓都有兩個(gè)交點(diǎn),任何三個(gè)圓除P點(diǎn)外無其他公共點(diǎn),那么試問:
學(xué)習(xí)地址:佛山市南海區(qū)南海大道麗雅苑中區(qū)雅廣居2D第1頁咨詢熱線:0757-8630706713760993549(吉老師)鼎吉教育遵循:“授人以魚,不如授人以漁”的教育理念秉承:以人為本,質(zhì)量第一,突出特色,服務(wù)家長
下面對(duì)Sn-Sn-1=n,即Sn=Sn-1+n的正確性略作說明.
分析與解我們先來研究一些特殊情況:
因?yàn)镾n-1為n-1個(gè)圓把平面劃分的區(qū)域數(shù),當(dāng)再加上一個(gè)圓,即當(dāng)n個(gè)圓過定點(diǎn)P時(shí),這個(gè)加上去的圓必與前n-1個(gè)圓相交,所以這個(gè)圓就被前n-1個(gè)圓分成n部分,加在Sn-1上,所以有Sn=Sn-1+n.
(2)與(1)一樣,同樣用觀察、歸納、發(fā)現(xiàn)的方法來解決.為此,可列出表18.2.
(2)設(shè)b=n=2,類似地可以列舉各種情況如表18.3.(1)設(shè)b=n=1,這時(shí)b=1,因?yàn)閍≤b≤c,所以a=1,c可取1,2,3,.若c=1,則得到一個(gè)三邊都為1的等邊三角形;若c≥2,由于a+b=2,那么a+b不大于第三邊c,這時(shí)不可能由a,b,c構(gòu)成三角形,可見,當(dāng)b=n=1時(shí),滿足條件的三角形只有一個(gè).
例3設(shè)a,b,c表示三角形三邊的長,它們都是自然數(shù),其中a≤b≤c,如果b=n(n是自然數(shù)),試問這樣的三角形有多少個(gè)?
由表18.2容易發(fā)現(xiàn)
這時(shí)滿足條件的三角形總數(shù)為:1+2=3.
a1=1,
(3)設(shè)b=n=3,類似地可得表18.4.
a2-a1=1,a3-a2=2,a4-a3=3,
a5-a4=4,
這時(shí)滿足條件的三角形總數(shù)為:1+2+3=6.
通過上面這些特例不難發(fā)現(xiàn),當(dāng)b=n時(shí),滿足條件的三角形
an-1-an-2=n-2,an-an-1=n-1.
n個(gè)式子相加
這個(gè)猜想是正確的.因?yàn)楫?dāng)b=n時(shí),a可取n個(gè)值(1,2,3,,n),對(duì)應(yīng)于a的每個(gè)值,不妨設(shè)a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k個(gè)(n,n+1,n+2,,
n+k-1).所以,當(dāng)b=n時(shí),滿足條件的三角形總數(shù)為:總數(shù)為:
例4設(shè)1×2×3××n縮寫為n!(稱作n的階乘),試化簡:
注意請讀者說明an=an-1+(n-1)的正確性.
1!×1+2!×2+3!×3++n!×n.分析與解先觀察特殊情況:
◆以鮮明的教育理念啟發(fā)人◆以濃厚的學(xué)習(xí)氛圍影響人第2頁◆以不倦的育人精神感染人◆以優(yōu)良的學(xué)風(fēng)學(xué)紀(jì)嚴(yán)律人◆鼎吉教育(DinjEducation)中小學(xué)生課外個(gè)性化輔導(dǎo)中心資料初中數(shù)學(xué)競賽專題培訓(xùn)講練(1)當(dāng)n=1時(shí),原式=1=(1+1)!-1;(2)當(dāng)n=2時(shí),原式=5=(2+1)!-1;(3)當(dāng)n=3時(shí),原式=23=(3+1)!-1;(4)當(dāng)n=4時(shí),原式=119=(4+1)!-1.由此做出一般歸納猜想:原式=(n+1)!-1.下面我們證明這個(gè)猜想的正確性.
1+原式=1+(1!×1+2!×2+3!×3++n!×n)=1!×2+2!×2+3!×3++n!×n=2!+2!×2+3!×3++n!×n=2!×3+3!×3++n!×n=3!+3!×3++n!×n==n!+n!×n=(n+1)!,所以原式=(n+1)!-1.
例5設(shè)x>0,試比較代數(shù)式x3和x2+x+2的值的大小.
分析與解本題直接觀察,不好做出歸納猜想,因此可設(shè)x等于某些特殊值,代入兩式中做試驗(yàn)比較,或許能啟發(fā)我們發(fā)現(xiàn)解題思路.為此,設(shè)x=0,顯然有
x3<x2+x+2.①
設(shè)x=10,則有x3=1000,x2+x+2=112,所以
x3>x2+x+2.②
設(shè)x=100,則有x>x+x+2.
觀察、比較①,②兩式的條件和結(jié)論,可以發(fā)現(xiàn):當(dāng)x值較小時(shí),x3<x2+x+2;當(dāng)x值較大時(shí),x3>x2+x+2.
那么自然會(huì)想到:當(dāng)x=?時(shí),x3=x2+x+2呢?如果這個(gè)方程得解,則它很可能就是本題得解的“臨界點(diǎn)”.為此,設(shè)x3=x2+x+2,則
x-x-x-2=0,(x3-x2-2x)+(x-2)=0,
學(xué)習(xí)地址:佛山市南海區(qū)南海大道麗雅苑中區(qū)雅廣居2D第3頁咨詢熱線:0757-8630706713760993549(吉老師)
3232(x-2)(x2+x+1)=0.
因?yàn)閤>0,所以x2+x+1>0,所以x-2=0,所以x=2.這樣(1)當(dāng)x=2時(shí),x=x+x+2;(2)當(dāng)0<x<2時(shí),因?yàn)?/p>
x-2<0,x+x+2>0,
所以(x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以x3<x2+x+2.
(3)當(dāng)x>2時(shí),因?yàn)閤-2>0,x2+x+2>0,所以(x-2)(x+x+2)>0,即x3-(x2+x+2)>0,所以x3>x2+x+2.
綜合歸納(1),(2),(3),就得到本題的解答.
2232分析先由特例入手,注意到
例7已知E,F(xiàn),G,H各點(diǎn)分別在四邊形ABCD的AB,BC,CD,DA邊上(如圖2101).鼎吉教育遵循:“授人以魚,不如授人以漁”的教育理念秉承:以人為本,質(zhì)量第一,突出特色,服務(wù)家長
練習(xí)十八
1.試證明例7中:
2.平面上有n條直線,其中沒有兩條直線互相平行(即每兩條直線都相交),也沒有三條或三條以上的直線通過同一點(diǎn).試求:(1)這n條直線共有多少個(gè)交點(diǎn)?
(2)這n條直線把平面分割為多少塊區(qū)域?
(2)當(dāng)上述條件中比值為3,4,,n時(shí)(n為自然數(shù)),那S么S四邊形EFGH與S四邊形ABCD之比是多少?
引GM∥AC交DA于M點(diǎn).由平行截割定理易知
G(2)設(shè)
然后做出證明.)
當(dāng)k=3,4時(shí),用類似于(1)的推理方法將所得結(jié)論與(1)的結(jié)論列成表18.5.
4.求適合x5=656356768的整數(shù)x.
(提示:顯然x不易直接求出,但可注意其取值范圍:505<656356768<605,所以502<x<602.=
觀察表18.5中p,q的值與對(duì)應(yīng)k值的變化關(guān)系,不難發(fā)現(xiàn):當(dāng)k=n(自然數(shù))時(shí)有
以上推測是完全正確的,證明留給讀者.
◆以鮮明的教育理念啟發(fā)人◆以濃厚的學(xué)習(xí)氛圍影響人第4頁◆以不倦的育人精神感染人◆以優(yōu)良的學(xué)風(fēng)學(xué)紀(jì)嚴(yán)律人◆
友情提示:本文中關(guān)于《初中數(shù)學(xué)競賽培訓(xùn)總結(jié)》給出的范例僅供您參考拓展思維使用,初中數(shù)學(xué)競賽培訓(xùn)總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。