初一數(shù)學上冊知識點總結(jié)
初一數(shù)學上冊知識點總結(jié)
(一)有理數(shù)及其運算復習
一、有理數(shù)的基礎(chǔ)知識
1、三個重要的定義:
(1)正數(shù):像1、2.5、這樣大于0的數(shù)叫做正數(shù);(2)負數(shù):在正數(shù)前面加上“-”號,表示比0小的數(shù)叫做負數(shù);(3)0即不是正數(shù)也不是負數(shù).2、有理數(shù)的分類:(1)按定義分類:整數(shù)有理數(shù)分數(shù)正整數(shù)0負整數(shù)正分數(shù)負分數(shù)(2)按性質(zhì)符號分類:
正有理數(shù)有理數(shù)0負有理數(shù)正整數(shù)正分數(shù)
負整數(shù)負分數(shù)3、數(shù)軸
數(shù)軸有三要素:原點、正方向、單位長度.畫一條水平直線,在直線上取一點表示0(叫做原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸.在數(shù)軸上的所表示的數(shù),右邊的數(shù)總比左邊的數(shù)大,所以正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù).
4、相反數(shù)
如果兩個數(shù)只有符號不同,那么其中一個數(shù)就叫另一個數(shù)的相反數(shù).0的相反數(shù)是0,互為相反的兩上數(shù),在數(shù)軸上位于原點的兩則,并且與原點的距離相等.
5、絕對值
(1)絕對值的幾何意義:一個數(shù)的絕對值就是數(shù)軸上表示該數(shù)的點與原點的距離.(2)絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身;0的絕對值是0;一個負數(shù)的絕對值是它的相反數(shù),可用字母a表示如下:
(a0)aa0(a0)
a(a0)(3)兩個負數(shù)比較大小,絕對值大的反而小.二、有理數(shù)的運算1、有理數(shù)的加法(1)有理數(shù)的加法法則:
①同號兩數(shù)相加,取相同的符號,并把絕對值相加;②絕對值不等的異號兩數(shù)相加,取絕對值較大數(shù)的符號,并用較大的絕對值減去較小的絕對值;
③互為相反的兩個數(shù)相加得0;
④一個數(shù)同0相加,仍得這個數(shù).(2)有理數(shù)加法的運算律:
加法的交換律:a+b=b+a;加法的結(jié)合律:(a+b)+c=a+(b+c)用加法的運算律進行簡便運算的基本思路是:先把互為相反數(shù)的數(shù)相加;把同分母的分數(shù)先相加;把符號相同的數(shù)先相加;把相加得整數(shù)的數(shù)先相加.
2、有理數(shù)的減法
(1)有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
(2)有理數(shù)減法常見的錯誤:顧此失彼,沒有顧到結(jié)果的符號;仍用小學計算的習慣,不把減法變加法;只改變運算符號,不改變減數(shù)的符號,沒有把減數(shù)變成相反數(shù).(3)有理數(shù)加減混合運算步驟:先把減法變成加法,再按有理數(shù)加法法則進行運算;3、有理數(shù)的乘法
(1)有理數(shù)乘法的法則:兩個有理數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)與0相乘都得0.(2)有理數(shù)乘法的運算律:交換律:ab=ba;結(jié)合律:(ab)c=a(bc);交換律:a(b+c)=ab+ac.(3)倒數(shù)的定義:乘積是1的兩個有理數(shù)互為倒數(shù),即ab=1,那么a和b互為倒數(shù);倒數(shù)也可以看成是把分子分母的位置顛倒過來.
4、有理數(shù)的除法
有理數(shù)的除法法則:除以一個數(shù),等于乘上這個數(shù)的倒數(shù),0不能做除數(shù).這個法則可以把除法轉(zhuǎn)化為乘法;除法法則也可以看成是:兩個數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù)都等于0.
5、有理數(shù)的乘法
(1)有理數(shù)的乘法的定義:求幾個相同因數(shù)a的運算叫做乘方,乘方是一種運算,是幾個相同的因數(shù)的特殊乘法運算,記做“a”其中a叫做底數(shù),表示相同的因數(shù),n叫做指數(shù),表示相同因數(shù)的個數(shù),它所表示的意義是n個a相乘,不是n乘以a,乘方的結(jié)果叫做冪.
(2)正數(shù)的任何次方都是正數(shù),負數(shù)的偶數(shù)次方是正數(shù),負數(shù)的奇數(shù)次方是負數(shù)6、有理數(shù)的混合運算
(1)進行有理數(shù)混合運算的關(guān)建是熟練掌握加、減、乘、除、乘方的運算法則、運算律及運算順序.比較復雜的混合運算,一般可先根據(jù)題中的加減運算,把算式分成幾段,計算時,先從每段的乘方開始,按順序運算,有括號先算括號里的,同時要注意靈活運用運算律簡化運算.
(2)進行有理數(shù)的混合運算時,應注意:一是要注意運算順序,先算高一級的運算,再算低一級的運算;二是要注意觀察,靈活運用運算律進行簡便運算,以提高運算速度及運算能力.
n
(2)整式的加減復習
單項式代數(shù)式整式系數(shù)次數(shù)豐富的問題情景多項式列代數(shù)式項去括號、添括號法則整式加減法同類項合并同類項
(3)一元一次方程復習
一、方程的有關(guān)概念1、方程的概念:
(1)含有未知數(shù)的等式叫方程.
(2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程.
2、等式的基本性質(zhì):
(1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式.若a=b,則a+c=b+c或ac=bc.(2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式.若a=b,則ac=bc或
acbc
(3)對稱性:等式的左右兩邊交換位置,結(jié)果仍是等式.若a=b,則b=a.(4)傳遞性:如果a=b,且b=c,那么a=c,這一性質(zhì)叫等量代換.二、解方程
1、移項的有關(guān)概念:
把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項.這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù).要明白移項就是根據(jù)解方程變形的需要,把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號.
2、解一元一次方程的步驟:(1)去分母等式的性質(zhì)2
注意拿這個最小公倍數(shù)乘遍方程的每一項,切記不可漏乘某一項,分母是小數(shù)的,要先利用分數(shù)的性質(zhì),把分母化為整數(shù),若分子是代數(shù)式,則必加括號.
(2)去括號去括號法則、乘法分配律嚴格執(zhí)行去括號的法則,若是數(shù)乘括號,切記不漏乘括號內(nèi)的項,減號后去括號,括號內(nèi)各項的符號一定要變號.
(3)移項等式的性質(zhì)1
越過“=”的叫移項,屬移項者必變號;未移項的項不變號,注意不遺漏,移項時把含未知數(shù)的項移在左邊,已知數(shù)移在右邊,書寫時,先寫不移動的項,把移動過來的項改變符號寫在后面
(4)合并同類項合并同類項法則
注意在合并時,僅將系數(shù)加到了一起,而字母及其指數(shù)均不改變.(5)系數(shù)化為1等式的性質(zhì)2
兩邊同除以未知數(shù)的系數(shù),記住未知數(shù)的系數(shù)永遠是分母(除數(shù)),切不可分子、分母顛倒.
(6)檢驗
二、列方程解應用題
1、列方程解應用題的一般步驟:
(1)將實際問題抽象成數(shù)學問題;
(2)分析問題中的已知量和未知量,找出等量關(guān)系;(3)設(shè)未知數(shù),列出方程;(4)解方程;(5)檢驗并作答.
2、一些實際問題中的規(guī)律和等量關(guān)系:
(1)日歷上數(shù)字排列的規(guī)律是:橫行每整行排列7個連續(xù)的數(shù),豎列中,下面的數(shù)比上面的數(shù)大7.日歷上的數(shù)字范圍是在1到31之間,不能超出這個范圍.(2)幾種常用的面積公式:
長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;
梯形面積公式:S=
12(ab)h,a,b為上下底邊長,h為梯形的高,S為梯形面積;
2圓形的面積公式:Sr,r為圓的半徑,S為圓的面積;三角形面積公式:S面積.
(3)幾種常用的周長公式:長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長.正方形的周長:L=4a,a為正方形的邊長,L為周長.圓:L=2πr,r為半徑,L為周長.
(4)柱體的體積等于底面積乘以高,當體積不變時,底面越大,高度就越低.所以等積變化的相等關(guān)系一般為:變形前的體積=變形后的體積.
(5)打折銷售這類題型的等量關(guān)系是:利潤=售價成本.
(6)行程問題中關(guān)建的等量關(guān)系:路程=速度×時間,以及由此導出的其化關(guān)系.
(7)在一些復雜問題中,可以借助表格分析復雜問題中的數(shù)量關(guān)系,找出若干個較直接的等量關(guān)系,借此列出方程,列表可幫助我們分析各量之間的相互關(guān)系.
(8)在行程問題中,可將題目中的數(shù)字語言用“線段圖”表達出來,分析問題中的數(shù)量關(guān)系,從而找出等量關(guān)系,列出方程.
12ah,a為三角形的一邊長,h為這一邊上的高,S為三角形的(9)關(guān)于儲蓄中的一些概念:
本金:顧客存入銀行的錢;利息:銀行給顧客的酬金;本息:本金與利息的和;期數(shù):存入的時間;利率:每個期數(shù)內(nèi)利息與本金的比;利息=本金×利率×期數(shù);本息=本金+利息.
(4)圖形初步認識總復習(一)多姿多彩的圖形
立體圖形:棱柱、棱錐、圓柱、圓錐、球等.1、幾何圖形平面圖形:三角形、四邊形、圓等.
主(正)視圖---------從正面看
2、幾何體的三視圖側(cè)(左、右)視圖-----從左(右)邊看
俯視圖---------------從上面看
(1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖.(2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?
3、立體圖形的平面展開圖
(1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的.
(2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型.4、點、線、面、體(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形最基本的圖形.線:面和面相交的地方是線,分為直線和曲線.面:包圍著體的是面,分為平面和曲面.體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.(二)直線、射線、線段1、基本概念
圖形端點個數(shù)表示法作法敘述直線無直線a直線AB(BA)作直線AB;作直線a射線一個射線AB作射線AB反向延長射線AB線段兩個線段a線段AB(BA)作線段a;作線段AB;連接AB延長線段AB;反向延長線段BA延長敘述不能延長2、直線的性質(zhì)經(jīng)過兩點有一條直線,并且只有一條直線.簡單地:兩點確定一條直線.3、畫一條線段等于已知線段(1)度量法
(2)用尺規(guī)作圖法4、線段的大小比較方法(1)度量法(2)疊合法
5、線段的中點(二等分點)、三等分點、四等分點等定義:把一條線段平均分成兩條相等線段的點.圖形:
AMB
符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM.6、線段的性質(zhì)
兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.7、兩點的距離
連接兩點的線段長度叫做兩點的距離.8、點與直線的位置關(guān)系
(1)點在直線上(2)點在直線外.(三)角
1、角:由公共端點的兩條射線所組成的圖形叫做角.2、角的表示法(四種):3、角的度量單位及換算4、角的分類
∠β范圍銳角0<∠β<90°直角∠β=90°鈍角90°
擴展閱讀:初中數(shù)學七年級上冊知識點總結(jié)
提分數(shù)學
提分數(shù)學七年級上知識清單
第一章有理數(shù)
一.正數(shù)和負數(shù)
⒈正數(shù)和負數(shù)的概念
負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)
注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,-a是負數(shù);當a表示負數(shù)時,-a是正數(shù);當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。2.具有相反意義的量
若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數(shù):比原先多了的數(shù),增加增長了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負數(shù)。3.0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。
二.有理數(shù)
1.有理數(shù)的概念
⑴正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))⑵正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)
⑶正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。
注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像-2,-4,-6,-8也是偶數(shù),-1,-3,-5也是奇數(shù)。2.(1)凡能寫成
q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負p分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
提分數(shù)學
正整數(shù)正有理數(shù)正分數(shù)(2)有理數(shù)的分類:①按正、負分類:有理數(shù)零
負整數(shù)負有理數(shù)負分數(shù)正整數(shù)整數(shù)零②按有理數(shù)的意義來分:有理數(shù)負整數(shù)正分數(shù)分數(shù)負分數(shù)總結(jié):①正整數(shù)、0統(tǒng)稱為非負整數(shù)(也叫自然數(shù))②負整數(shù)、0統(tǒng)稱為非正整數(shù)③正有理數(shù)、0統(tǒng)稱為非負有理數(shù)④負有理數(shù)、0統(tǒng)稱為非正有理數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).
三.數(shù)軸
⒈數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。2.數(shù)軸上的點與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,0用原點表示。
⑵所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))3.利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;⑵正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù);⑶兩個負數(shù)比較,距離原點遠的數(shù)比距離原點近的數(shù)小。
提分數(shù)學
4.數(shù)軸上特殊的最大(小)數(shù)
⑴最小的自然數(shù)是0,無最大的自然數(shù);⑵最小的正整數(shù)是1,無最大的正整數(shù);⑶最大的負整數(shù)是-1,無最小的負整數(shù)5.a可以表示什么數(shù)
⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;⑵a提分數(shù)學
⑴一般地,數(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負數(shù)或0。當a>0時,-a0,那么|a|=a;②如果a0),則x=±a;
⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負數(shù),即
提分數(shù)學
|a|≥0;注意:|a||b|=|ab|,
abab⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數(shù)的常用性質(zhì):若幾個非負數(shù)的和為0,則有且只有這幾個非負數(shù)同時為0)4.有理數(shù)大小的比較
⑴利用數(shù)軸比較兩個數(shù)的大小:數(shù)軸上的兩個數(shù)相比較,左邊的數(shù)總比右邊的數(shù)小,或者右邊的數(shù)總比左邊的數(shù)大
⑵利用絕對值比較兩個負數(shù)的大。簝蓚負數(shù)比較大小,絕對值大的反而;異號兩數(shù)比較大小,正數(shù)大于負數(shù)。
(3)正數(shù)的絕對值越大,這個數(shù)越大;(4)正數(shù)永遠比0大,負數(shù)永遠比0小;(5)正數(shù)大于一切負數(shù);
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.5.絕對值的化簡
①當a≥0時,|a|=a;②當a≤0時,|a|=-a6.已知一個數(shù)的絕對值,求這個數(shù)
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負數(shù)的數(shù)。
六.有理數(shù)的加減法.
1.有理數(shù)的加法法則
⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加;
⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數(shù)的兩數(shù)相加,和為零;⑷一個數(shù)與0相加,仍得這個數(shù)。2.有理數(shù)加法的運算律⑴加法交換律:a+b=b+a⑵加法結(jié)合律:(a+b)+c=a+(b+c)
在運用運算律時,一定要根據(jù)需要靈活運用,以達到化簡的目的,通常有下列規(guī)律:①互為相反數(shù)的兩個數(shù)先相加“相反數(shù)結(jié)合法”;
提分數(shù)學
②符號相同的兩個數(shù)先相加“同號結(jié)合法”;③分母相同的數(shù)先相加“同分母結(jié)合法”;④幾個數(shù)相加得到整數(shù),先相加“湊整法”;⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加“同形結(jié)合法”。3.加法性質(zhì)
一個數(shù)加正數(shù)后的和比原數(shù)大;加負數(shù)后的和比原數(shù)。患0后的和等于原數(shù)。即:⑴當b>0時,a+b>a⑵當b提分數(shù)學
Ⅲ.把分母相同或便于通分的加數(shù)相結(jié)合(同分母結(jié)合法)--
313217+-+-524528321137)+(-+)+(+-)55224818原式=(--
=-1+0-
=-1
Ⅳ.既有小數(shù)又有分數(shù)的運算要統(tǒng)一后再結(jié)合(先統(tǒng)一后結(jié)合)(+0.125)-(-3
18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3
18=+3
183121-3+10-14834=(3
31112-1)+(-3)+1044883=2
12-3+102316=-3+13
=10
16617-12+41122151761)+(-)
5151122Ⅴ.把帶分數(shù)拆分后再結(jié)合(先拆分后結(jié)合)-3+10
15原式=(-3+10-12+4)+(-+
=-1+
411+1522提分數(shù)學
=-1+
815+3030=-
730Ⅵ.分組結(jié)合
2-3-4+5+6-7-8+9+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)
=0Ⅶ.先拆項后結(jié)合
(1+3+5+7+99)-(2+4+6+8+100)
七.有理數(shù)的乘除法
1.有理數(shù)的乘法法則
法則一:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;(“同號得正,異號得負”專指“兩數(shù)相乘”的情況,如果因數(shù)超過兩個,就必須運用法則三)法則二:任何數(shù)同0相乘,都得0;
法則三:幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積是負數(shù);法則四:幾個數(shù)相乘,如果其中有因數(shù)為0,則積等于0.2.倒數(shù)
乘積是1的兩個數(shù)互為倒數(shù),其中一個數(shù)叫做另一個數(shù)的倒數(shù),用式子表示為a
1=1(a≠0),就是說aa和
111互為倒數(shù),即a是的倒數(shù),是a的倒數(shù)。aaa1互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是;倒數(shù)是本身的數(shù)
a是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).注意:①0沒有倒數(shù);
②求假分數(shù)或真分數(shù)的倒數(shù),只要把這個分數(shù)的分子、分母點顛倒位置即可;求帶分數(shù)的倒數(shù)時,先把帶分數(shù)化為假分數(shù),再把分子、分母顛倒位置;
③正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(求一個數(shù)的倒數(shù),不改變這個數(shù)的性質(zhì));④倒數(shù)等于它本身的數(shù)是1或-1,不包括0。3.有理數(shù)的乘法運算律
提分數(shù)學
⑴乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。即ab=ba⑵乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a(b+c)=ab+ac4.有理數(shù)的除法法則
(1)除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即無意義(2)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得05.有理數(shù)的乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。
(2)有理數(shù)的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進行。
a0八.有理數(shù)的乘方
1.乘方的概念
求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。(1)a是重要的非負數(shù),即a≥0;若a+|b|=0a=0,b=0;
0.120.01211(2)據(jù)規(guī)律2底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位
101002
22n2.乘方的性質(zhì)
(1)負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪的正數(shù);注意:當n為正奇數(shù)時:(-a)=-a或(a-b)=-(b-a),當
n為正偶數(shù)時:(-a)=a或(a-b)=(b-a).
(2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
nnnnnnnn九.有理數(shù)的混合運算
做有理數(shù)的混合運算時,應注意以下運算順序:1.先乘方,再乘除,最后加減;2.同級運算,從左到右進行;
3.如有括號,先做括號內(nèi)的運算,按小括號,中括號,大括號依次進行。
十.科學記數(shù)法
把一個大于10的數(shù)表示成a10的形式(其中1a10,n是正整數(shù)),這種記數(shù)法是科學記數(shù)法
-9-
n提分數(shù)學
近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.
有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原
則.
特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.
等于本身的數(shù)匯總:相反數(shù)等于本身的數(shù):0倒數(shù)等于本身的數(shù):1,-1絕對值等于本身的數(shù):正數(shù)和0平方等于本身的數(shù):0,1立方等于本身的數(shù):0,1,-1.
第二章整式的加減
一.用字母表示數(shù)(代數(shù)初步知識)
1.代數(shù)式:用運算符號“+-÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式;用基本運算符號把數(shù)和字母連接而成的式子叫做代數(shù)式,如n,-1,2n+500,abc。2.代數(shù)式書寫規(guī)范:
(1)數(shù)與字母相乘,或字母與字母相乘中通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應使用“”乘,不用“”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a5應寫成5a;13(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a1應寫成a;
223(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
a提分數(shù)學
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應分類,寫做
a-b和b-a.
出現(xiàn)除式時,用分數(shù)表示;
(7)若運算結(jié)果為加減的式子,當后面有單位時,要用括號把整個式子括起來。3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)
是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a+b,負數(shù)是:-a-b,非負數(shù)是:a,非正數(shù)是:-a.
2222222二.整式
1.單項式:表示數(shù)與字母的乘積的代數(shù)式叫單項式。單獨的一個數(shù)或一個字母也是代數(shù)式。
2.單項式的系數(shù):單項式中的數(shù)字因數(shù);單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);
3.單項式的次數(shù):一個單項式中,所有字母的指數(shù)和
4多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。常數(shù)項的次數(shù)為0。注意:(若a、b、c、p、q是常數(shù))ax+bx+c和x+px+q是常見的兩個二次三項式.
5整式:單項式和多項式統(tǒng)稱為整式,即凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:整式2
2單項式多項式.
注意:分母上含有字母的不是整式。
6.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,
叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應該進行升冪(或降冪)排列.
提分數(shù)學
三.整式的加減
1.合并同類項
2同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
3合并同類項的法則:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
4合并同類項的步驟:(1)準確的找出同類項;(2)運用加法交換律,把同類項交換位置后結(jié)合在一起;(3)利用法則,把同類項的系數(shù)相加,字母和字母的指數(shù)不變;(4)寫出合并后的結(jié)果。5去括號去括號的法則:
(1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項的符號都不變;(2)括號前面是“”號,把括號和它前面的“”號去掉,括號里各項的符號都要改變。
6添括號法則:添括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號
里的各項都要變號.
7整式的加減:進行整式的加減運算時,如果有括號先去括號,再合并同類項;整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.
8整式加減的步驟:(1)列出代數(shù)式;(2)去括號;(3)添括號(4)合并同類項。
第三章一元一次方程
1等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3方程:含未知數(shù)的等式,叫方程.
4一元一次方程的概念:只含有一個未知數(shù)(元)(含未知數(shù)項的系數(shù)不是零)且未知數(shù)的指數(shù)是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)
1注意:未知數(shù)在分母中時,它的次數(shù)不能看成是1次。如3x,它不是一元一次方程。
x5解一元一次方程
提分數(shù)學
方程的解:能使方程左右兩邊相等的未知數(shù)的值叫做方程的解;注意:“方程的解就能代入”驗算!解方程:求方程的解的過程叫做解方程。
等式的性質(zhì):(1)等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式;(2)等式兩邊都乘或除以同一個不等于0的數(shù),所得結(jié)果仍是等式。
6移項
移項:方程中的某些項改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項。
移項的依據(jù):(1)移項實際上就是對方程兩邊進行同時加減,根據(jù)是等式的性質(zhì)1;(2)系數(shù)化為1實際上就是對方程兩邊同時乘除,根據(jù)是等式的性質(zhì)2。
移項的作用:移項時一般把含未知數(shù)的項向左移,常數(shù)項往右移,使左邊對含未知數(shù)的項合并,右邊對常數(shù)項合并。
注意:移項時要跨越“=”號,移過的項一定要變號。
7解一元一次方程的一般步驟:整理方程、去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1;(檢驗方程的解)。
注意:去分母時不可漏乘不含分母的項。分數(shù)線有括號的作用,去掉分母后,若分子是多項式,要加括號。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解決問題
列一元一次方程解應用題的基本步驟:審清題意、設(shè)未知數(shù)(元)、列出方程、解方程、寫出答案。關(guān)鍵在于抓住問題中的有關(guān)數(shù)量的相等關(guān)系,列出方程。
解決問題的策略:利用表格和示意圖幫助分析實際問題中的數(shù)量關(guān)系9列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形
提分數(shù)學
各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
10實際問題的常見類型:
(1)行程問題:路程=時間速度,時間=
路程路程,速度=速度時間(單位:路程米、千米;時間秒、分、時;速度米/秒、米/分、千米/小時)
(2)工程問題:工作總量=工作時間工作效率,工作效率工作時間工作總量;工作總量=各部分工作量的和;
工作效率利潤,售價=標價(1-折扣);進價工作總量;
工作時間(3)利潤問題:利潤=售價-進價,利潤率=
(4)商品價格問題:售價=定價折
售價成本1100%;,利潤=售價-成本,利潤率成本10(5)利息問題:本息和=本金+利息;利息=本金利率(6)比率問題:部分=全體比率比率部分部分全體;全體比率(7)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(8)等積變形問題:長方體的體積=長寬高;圓柱的體積=底面積高;鍛造前的體積=鍛造后的體積
(9)周長、面積、體積問題:C圓=2πR,S圓=πR,C長方形=2(a+b),S長方形=ab,C正方形=4a,
21222322
S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.
310.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
提分數(shù)學
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
第四章走進圖形世界
1、幾何圖形:
現(xiàn)實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。長方體、正方體、球、圓柱、
圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。長方形、正方形、三角形、圓
等都是平面圖形。
立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當?shù)丶糸_,就可以展開成平面圖形。
2、點、線、面、體(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點;幾何圖形都是由點、線、面、體組成的,點是構(gòu)成圖形的基本元素。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形圓柱柱體
棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、
生活中的立體圖形球體
(按名稱分)圓錐
椎體
提分數(shù)學
棱錐
4、棱柱及其有關(guān)概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。
n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。
棱柱的所有側(cè)棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側(cè)面是長方形。棱柱的側(cè)面有可能是長方形,也有可能是平行四邊形。
5、正方體的平面展開圖:11種
6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。
平面圖形的認識
線段,射線,直線名稱線段射線直線
-16-
不同點延伸性不能延伸只能向一方延伸可向兩方無限延伸端點數(shù)21無聯(lián)系線段向一方延長就成射線,向兩方延長就成直線共同點都是直的線提分數(shù)學
點、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點可以用一個大寫字母表示,如點A
一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示,如直線l,或者直線AB
一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面),如射線l,射線AB一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示,如線段l,線段AB
點和直線的位置關(guān)系有兩種:
①點在直線上,或者說直線經(jīng)過這個點。②點在直線外,或者說直線不經(jīng)過這個點。
線段的性質(zhì)
(1)線段公理:兩點之間的所有連線中,線段最短。
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。(3)線段的中點到兩端點的距離相等。
(4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。(5)線段的比較:1.目測法2.疊合法3.度量法線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。
M是線段AB的中點
A直線的性質(zhì)
MBAM=BM=
1AB(或者AB=2AM=2BM)2(1)直線公理:經(jīng)過兩個點有且只有一條直線。(2)過一點的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。
(5)兩條不同的直線至多有一個公共點。
經(jīng)過兩點有一條直線,并且只有一條直線;兩點確定一條直線;點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
提分數(shù)學
直線桑一點和它一旁的部分叫做射線;兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。
角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉(zhuǎn)而成的。
平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當它又和始邊重合時,所形成的角叫做周角。
角的表示:
①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。
用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”;度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;
把1°的角60等分,每一份叫做1分的角,1分記作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒記作“1””;角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運算。角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,
1°=60’,1’=60”
還有叫的三等分線。
AOB平分∠AOC∠AOB=∠BOC=
1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)
-18-
C提分數(shù)學
余角和補角
①如果兩個角的和是一個直角等于90°,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的
余角。用數(shù)學語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°
②如果兩個角的和是一個平角等于180°,這兩個角叫做互為補角,簡稱互補,其中一個角是另一個角的補角。用數(shù)學語言表示為如果∠α+∠β=180°,那么∠α與∠β互補;反過來如果∠α與∠β互補,那么∠α+∠β=180°
③同角(或等角)的余角相等;同角(或等角)的補角相等。
對頂角
①一對角,如果它們的頂點重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一
個角叫做另一個角的對頂角。
注意:對頂角是成對出現(xiàn)的,它們有公共的頂點;只有兩條直線相交時才能形成對頂角。
②對頂角的性質(zhì):對頂角相等
如圖,∠1和∠4是對頂角,∠2和∠3是對頂角
2431∠1=∠4,∠2=∠3
平行線:
在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。
注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。
(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論
平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補充平行線的判定方法:
提分數(shù)學
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。垂直:
兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。
垂線的性質(zhì):
性質(zhì)1:平面內(nèi),過一點有且只有一條直線與已知直線垂直。
性質(zhì)2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。
圖形知識結(jié)構(gòu)圖:
提分數(shù)學
從不同方向看立體圖形
立體圖形展開立體圖形
幾何圖形平面圖形角的度量角角的大小比較余角和補角角的平分線同角(等角)的余角相等;同角(等角)的補角相等等角的余角相等
直線、射線、線段
平面圖形平面圖形
友情提示:本文中關(guān)于《初一數(shù)學上冊知識點總結(jié)》給出的范例僅供您參考拓展思維使用,初一數(shù)學上冊知識點總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。