人教版高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)必修4知識(shí)點(diǎn)
正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角1、任意角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
零角:不作任何旋轉(zhuǎn)形成的角2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.
第一象限角的集合為k360k36090,k;第二象限角的集合為k36090k360180,k;第三象限角的集合為k360180k360270,k;第四象限角的集合為k360270k360360,k;
終邊在x軸上的角的集合為k180,k;終邊在y軸上的角的集合為k18090,k;終邊在坐標(biāo)軸上的角的集合為k90,k
3、與角終邊相同的角的集合為k360,k4、已知是第幾象限角,確定
nn所在象限的方法:先把各象限均分n等份,再從x軸的正半軸的上方起,依次將各區(qū)域標(biāo)上
*一、二、三、四,則原來是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為5、長度等于半徑長的弧所對(duì)的圓心角叫做1弧度.
n終邊所落在的區(qū)域.
6、半徑為r的圓的圓心角所對(duì)弧的長為l,則角的弧度數(shù)的絕對(duì)值是lr.
1807、弧度制與角度制的換算公式:2360,1,157.3.
1808、若扇形的圓心角為為弧度制,半徑為r,弧長為l,周長為C,面積為S,則lr,C2rl,S12lr12r.
yr,
29、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是x,y,它與原點(diǎn)的距離是rr22xy0,則sincosxr,tanyxx0.
10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.11、三角函數(shù)線:sin,cos,tan.12、同角三角函數(shù)的基本關(guān)系:1sin2cos1sin1cos,cos1sin;22222yPTvOMAx2sintansintancos,cos.
costansin13、三角函數(shù)的誘導(dǎo)公式:
1sin2ksin2sinsin3sinsin,cos2k,coscos,tan2ktank.
.cos,tantan.
,coscos,tantan4sinsin,coscos,tantan.
口訣:函數(shù)名稱不變,符號(hào)看象限.5sincos,cossin.6sincos,cossin.2222口訣:奇變偶不變,符號(hào)看象限.
14、函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
1倍(縱坐標(biāo)不變),得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖
象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)ysinx的圖象.函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
1倍(縱坐標(biāo)不變),得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移
個(gè)單位長度,得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的縱
坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)ysinx的圖象.函數(shù)ysinx0,0的性質(zhì):①振幅:;②周期:⑤初相:.
函數(shù)ysinx,當(dāng)xx1時(shí),取得最小值為ymin;當(dāng)xx2時(shí),取得最大值為ymax,則2;③頻率:f12;④相位:x;
12ymaxymin,
12ymaxymin,
2x2x1x1x2.
15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì)
16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.有向線段的三要素:起點(diǎn)、方向、長度.零向量:長度為0的向量.單位向量:長度等于1個(gè)單位的向量.
平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運(yùn)算:
⑴三角形法則的特點(diǎn):首尾相連.⑵平行四邊形法則的特點(diǎn):共起點(diǎn).
⑶三角形不等式:ababab.
⑷運(yùn)算性質(zhì):①交換律:abba;②結(jié)合律:abcabc;③a00aa.
⑸坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.
18、向量減法運(yùn)算:
⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.
Ca⑵坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.設(shè)、兩點(diǎn)的坐標(biāo)分別為x1,y1,x2,y2,則x1x2,y1y2.
19、向量數(shù)乘運(yùn)算:
abCC⑴實(shí)數(shù)與向量a的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作a.
①aa;②當(dāng)0時(shí),a的方向與a的方向相同;當(dāng)0時(shí),a的方向與a的方向相反;當(dāng)0時(shí),a0.
⑵運(yùn)算律:①aa;②aaa;③abab.
⑶坐標(biāo)運(yùn)算:設(shè)ax,y,則ax,yx,y.
20、向量共線定理:向量aa0與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使ba.
設(shè)ax1,y1,bx2,y2,其中b0,則當(dāng)且僅當(dāng)x1y2x2y10時(shí),向量a、bb0共線.
21、平面向量基本定理:如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)1、2,使a1e12e2.(不共線的向量e1、e2作為這一平面內(nèi)所有向量的一組基底)
22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段12上的一點(diǎn),1、2的坐標(biāo)分別是x1,y1,x2,y2,當(dāng)12時(shí),點(diǎn)的坐標(biāo)是
x1x2y1y2,.
1123、平面向量的數(shù)量積:⑴ababcosa0,b0,0180.零向量與任一向量的數(shù)量積為0.
⑵性質(zhì):設(shè)a和b都是非零向量,則①abab0.②當(dāng)a與b同向時(shí),abab;當(dāng)a與b反向時(shí),abab;22aaaa或aaa.③abab.
⑶運(yùn)算律:①abba;②ababab;③abcacbc.
⑷坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量ax1,y1,bx2,y2,則abx1x2y1y2.
若ax,y,則a2xy,或a22xy;設(shè)ax1,y1,bx2,y2,則abx1x2y1y20;
22ab設(shè)a、b都是非零向量,ax1,y1,bx2,y2,是a與b的夾角,則cosab24、兩角和與差的正弦、余弦和正切公式:⑴cos⑶sinx1x2y1y2xy2121xy2222.
coscossinsin;⑵coscoscossinsin;sincoscossin;⑷sinsincoscossin;tantan1tantantantan1tantan(tantan⑸tantan1tantan);
⑹tan(tantantan1tantan).
25、二倍角的正弦、余弦和正切公式:⑴sin22sincos.
⑵cos2cossin2cos112sin(cos22222cos212.
,sin21cos22).⑶tan22tan1tan2.
26、sincossin,其中tan
擴(kuò)展閱讀:高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)必修4知識(shí)點(diǎn)
正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角1、任意角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
零角:不作任何旋轉(zhuǎn)形成的角2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.
第一象限角的集合為k360k36090,k第二象限角的集合為k36090k360180,k第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k3、與角終邊相同的角的集合為k360,k4、已知是第幾象限角,確定
nnn所在象限的方法:先把各象限均分n等
*份,再從x軸的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為
終邊所落在的區(qū)域.
lr5、長度等于半徑長的弧所對(duì)的圓心角叫做1弧度.
6、半徑為r的圓的圓心角所對(duì)弧的長為l,則角的弧度數(shù)的絕對(duì)值是1807、弧度制與角度制的換算公式:2360,1,157.3.180.
8、若扇形的圓心角為為弧度制,半徑為r,弧長為l,周長為C,面積為S,則lr,C2rl,S12lr12r.
29、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是x,y,它與原點(diǎn)的距離是rrxy022,則sinyr,cosxr,tanyxx0.
10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.
11、三角函數(shù)線:sin,cos,tan.12、同角三角函數(shù)的基本關(guān)系:1sincos1
22yPTsin1cos,cos1sin2222;2sincostan
OvMAxsinsintancos,cos.
tan13、三角函數(shù)的誘導(dǎo)公式:
1sin2ksin,cos2kcos,tan2ktank.2sinsin,coscos,tantan.3sinsin,coscos,tantan.4sinsin,coscos,tantan.
口訣:函數(shù)名稱不變,符號(hào)看象限.
5sincos2cos2,cossin2.
6sin,cossin2.
口訣:奇變偶不變,符號(hào)看象限.
14、函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)
ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮
短)到原來的
1倍(縱坐標(biāo)不變),得到函數(shù)ysinx的圖象;再將函數(shù)
ysinx的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),
得到函數(shù)ysinx的圖象.
函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的得到函數(shù)
ysinx的圖象;再將函數(shù)ysinx1倍(縱坐標(biāo)不變),
的圖象上所有點(diǎn)向左(右)平移
個(gè)單位
長度,得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)
的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)ysinx的圖象.
函數(shù)ysinx0,0的性質(zhì):
①振幅:;②周期:.
2;③頻率:f12;④相位:x;⑤初相:
函數(shù)ysinx,當(dāng)xx1時(shí),取得最小值為ymin;當(dāng)xx2時(shí),取得最大值為ymax,則12ymaxymin,12ymaxymin,
2x2x1x1x2.
15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函ycosx
性質(zhì)
數(shù)ysinxytanx
圖象
定義域值域
RRxxk,k
2R1,1
當(dāng)x2k21,1
k當(dāng)x2kk時(shí),
ymax1;當(dāng)x2k
最值時(shí),ymax1;當(dāng)
x2k
既無最大值也無最小值
21.
k時(shí),ymin1.
k時(shí),ymin2周
期性奇奇函數(shù)偶性單
調(diào)在2k,2k
22性
2偶函數(shù)奇函數(shù)
在2k,2kk上是
增函-3-在k2,k數(shù);在
k上是增函數(shù);在2k,2k
32k,2k22k上是增函數(shù).
k上是減函數(shù).
k上是減函數(shù).
對(duì)稱中心k,0k對(duì)
對(duì)稱軸稱
性xkk
2對(duì)稱中心
對(duì)稱中心
k,0k
2k,0k2對(duì)稱軸xkk
無對(duì)稱軸
16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.
有向線段的三要素:起點(diǎn)、方向、長度.
零向量:長度為0的向量.
單位向量:長度等于1個(gè)單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運(yùn)算:
⑴三角形法則的特點(diǎn):首尾相連.⑵平行四邊形法則的特點(diǎn):共起點(diǎn).
⑶三角形不等式:ababab.
⑷運(yùn)算性質(zhì):①交換律:abba;②結(jié)合律:abcabc;③
a00aa.
⑸坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.
Ca18、向量減法運(yùn)算:
⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.
⑵坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.設(shè)、兩點(diǎn)的坐標(biāo)分別為x1,y1,x2,y2,則x1x2y,1y2
b.abCC
19、向量數(shù)乘運(yùn)算:
⑴實(shí)數(shù)與向量a的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作a.
①aa;
②當(dāng)0時(shí),a的方向與a的方向相同;當(dāng)0時(shí),a的方向與a的方向相反;當(dāng)0時(shí),a0.
⑵運(yùn)算律:①aa;②aaa;③abab.
⑶坐標(biāo)運(yùn)算:設(shè)ax,y,則ax,yx,y.
20、向量共線定理:向量aa0與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使ba.
設(shè)ax1,y1,bx2,y2,其中b0,則當(dāng)且僅當(dāng)x1y2x2y10時(shí),向量a、bb0共線.
21、平面向量基本定理:如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)1、2,使a1e12e2.(不共線的向量e1、e2作為
這一平面內(nèi)所有向量的一組基底)
22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段12上的一點(diǎn),1、2的坐標(biāo)分別是x1,y1,x2,y2,xx2y1y2當(dāng)12時(shí),點(diǎn)的坐標(biāo)是1,.
1123、平面向量的數(shù)量積:
⑴ababcosa0,b0,0180.零向量與任一向量的數(shù)量積為0.
⑵性質(zhì):設(shè)a和b都是非零向量,則①abab0.②當(dāng)a與b同向時(shí),abab;22當(dāng)a與b反向時(shí),abab;aaaa或aaa.③abab.
⑶運(yùn)算律:①abba;②ababab;③abcacbc.
⑷坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量ax1,y1,bx2,y2,則abx1x2y1y2.
若ax,y,則a222xy,或axy.
22設(shè)ax1,y1,bx2,y2,則abx1x2y1y20.
設(shè)a、b都是非零向量,ax1,y1,bx2,y2,是a與b的夾角,則
abcosabx1x2y1y2xy2121xy2222.
24、兩角和與差的正弦、余弦和正切公式:⑴coscoscossinsin;
⑵coscoscossinsin;⑶sinsincoscossin;⑷sinsincoscossin;⑸tantantan1tantantantan1tantan(tantantan1tantan);
⑹tan(tantantan1tantan).
25、二倍角的正弦、余弦和正切公式:
⑴sin22sincos.⑵
2cos2cossin2cos112sin1cos222222(cos2cos212,
sin).
⑶tan22tan1tan2.
26、sincossin,其中tan22.
友情提示:本文中關(guān)于《人教版高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,人教版高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。