欧洲免费无码视频在线,亚洲日韩av中文字幕高清一区二区,亚洲人成人77777网站,韩国特黄毛片一级毛片免费,精品国产欧美,成人午夜精选视频在线观看免费,五月情天丁香宗合成人网

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 幾何證明定理(精選多篇)

幾何證明定理(精選多篇)

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-22 10:51:10 | 移動(dòng)端:幾何證明定理(精選多篇)
第一篇:高中幾何證明定理

高中幾何證明定理

一.直線與平面平行的(判定)

1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個(gè)平面平行.

2.應(yīng)用:反證法(證明直線不平行于平面)

二.平面與平面平行的(判定)

1.判定定理:一個(gè)平面上兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

2.關(guān)鍵:判定兩個(gè)平面是否有公共點(diǎn)

三.直線與平面平行的(性質(zhì))

1.性質(zhì):一條直線與一個(gè)平面平行,則過該直線的任一與此平面的交線與該直線平行2.應(yīng)用:過這條直線做一個(gè)平面與已知平面相交,那么交線平行于這條直線

四.平面與平面平行的(性質(zhì))

1.性質(zhì):如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么他們的交線平行

2.應(yīng)用:通過做與兩個(gè)平行平面都相交的平面得到交線,實(shí)現(xiàn)線線平行

五:直線與平面垂直的(定理)

1.判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直

2.應(yīng)用:如果一條直線與一個(gè)平面垂直,那么這條直線垂直于這個(gè)平面內(nèi)所有的直線(線面垂直→線線垂直)

六.平面與平面的垂直(定理)

1.一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直

(或者做二面角判定)

2.應(yīng)用:在其中一個(gè)平面內(nèi)找到或做出另一個(gè)平面的垂線,即實(shí)現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換

七.平面與平面垂直的(性質(zhì))

1.性質(zhì)一:垂直于同一個(gè)平面的兩條垂線平行

2.性質(zhì)二:如果兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

3.性質(zhì)三:如果兩個(gè)平面互相垂直,那么經(jīng)過第一個(gè)平面內(nèi)的一點(diǎn)垂直于第二個(gè)平面內(nèi)的直線,在第一個(gè)平面內(nèi)(性質(zhì)三沒什么用,可以不用記)

以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!。

想要變-態(tài)的這里多的是--

歐拉定理&歐拉線&歐拉公式(不一樣)

九點(diǎn)圓定理

葛爾剛點(diǎn)

費(fèi)馬定理(費(fèi)馬點(diǎn)(也叫做費(fèi)爾馬點(diǎn)))

海倫-公式

共角比例定理

張角定理

帕斯卡定理

曼海姆定理

卡諾定理

芬斯勒-哈德維格不等式(幾何的)

外森匹克不等式(同上)

琴生不等式(同上)

塞瓦定理

梅涅勞斯定理

斯坦納定理

托勒密定理

分角線定理(與角分線定理不同)

斯特瓦爾特定理

切點(diǎn)弦定理

西姆松定理。

第二篇:幾何證明定理

幾何證明定理

一.直線與平面平行的(判定)

1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個(gè)平面平行.

2.應(yīng)用:反證法(證明直線不平行于平面)

二.平面與平面平行的(判定)

1.判定定理:一個(gè)平面上兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

2.關(guān)鍵:判定兩個(gè)平面是否有公共點(diǎn)

三.直線與平面平行的(性質(zhì))

1.性質(zhì):一條直線與一個(gè)平面平行,則過該直線的任一與此平面的交線與該直線平行2.應(yīng)用:過這條直線做一個(gè)平面與已知平面相交,那么交線平行于這條直線

四.平面與平面平行的(性質(zhì))

1.性質(zhì):如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么他們的交線平行

2.應(yīng)用:通過做與兩個(gè)平行平面都相交的平面得到交線,實(shí)現(xiàn)線線平行

五:直線與平面垂直的(定理)

1.判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直

2.應(yīng)用:如果一條直線與一個(gè)平面垂直,那么這條直線垂直于這個(gè)平面內(nèi)所有的直線(線面垂直→線線垂直)

六.平面與平面的垂直(定理)

1.一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直

(或者做二面角判定)

2.應(yīng)用:在其中一個(gè)平面內(nèi)找到或做出另一個(gè)平面的垂線,即實(shí)現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換

七.平面與平面垂直的(性質(zhì))

1.性質(zhì)一:垂直于同一個(gè)平面的兩條垂線平行

2.性質(zhì)二:如果兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

3.性質(zhì)三:如果兩個(gè)平面互相垂直,那么經(jīng)過第一個(gè)平面內(nèi)的一點(diǎn)垂直于第二個(gè)平面內(nèi)的直線,在第一個(gè)平面內(nèi)(性質(zhì)三沒什么用,可以不用記)

以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!!

31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

32等腰三角形的頂角平分線、底邊上的中線和高互相重合

33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

35推論1三個(gè)角都相等的三角形是等邊三角形

36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

38直角三角形斜邊上的中線等于斜邊上的一半

39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上

45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c

47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個(gè)三角形是直角三角形

48定理四邊形的內(nèi)角和等于360°

49四邊形的外角和等于360°

50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

51推論任意多邊的外角和等于360°

52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

54推論夾在兩條平行線間的平行線段相等

55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分

56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

60矩形性質(zhì)定理1(更多請(qǐng)關(guān)注www.7334dd.com)矩形的四個(gè)角都是直角

61矩形性質(zhì)定理2矩形的對(duì)角線相等

62矩形判定定理1有三個(gè)角是直角的四邊形是矩形。

第三篇:初一常用幾何證明的定理

初一常用幾何證明的定理總結(jié)

平面直角坐標(biāo)系各個(gè)象限內(nèi)和坐標(biāo)軸的點(diǎn)的坐標(biāo)的符號(hào)規(guī)律:

(1)x軸將坐標(biāo)平面分為兩部分,x軸上方的縱坐標(biāo)為正數(shù);x軸下方的點(diǎn)縱坐標(biāo)為負(fù)數(shù)。即第一、二象限及y軸正方向(也稱y軸正半軸)上的點(diǎn)的縱坐標(biāo)為正數(shù);第三、四象限及y軸負(fù)方向(也稱y軸負(fù)半軸)上的點(diǎn)的縱坐標(biāo)為負(fù)數(shù)。

反之,如果點(diǎn)p(a ,b)在x軸上方,則b>0;如果p(a ,b)在x軸下方,則b<0。

(2)y軸將坐標(biāo)平面分成兩部分,y軸左側(cè)的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);y軸右側(cè)的點(diǎn)的橫坐標(biāo)為正數(shù)。即第

二、三象限和x軸的負(fù)半軸上的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);第一、四象限和x軸正半軸上的點(diǎn)的橫坐標(biāo)為正數(shù)。

(3)規(guī)定坐標(biāo)原點(diǎn)的坐標(biāo)為(0 ,0)

(4

(5)

第四篇:初一常用幾何證明的定理總結(jié)

初一常用幾何證明的定理總結(jié)

平面直角坐標(biāo)系各個(gè)象限內(nèi)和坐標(biāo)軸的點(diǎn)的坐標(biāo)的符號(hào)規(guī)律:

(1)x軸將坐標(biāo)平面分為兩部分,x軸上方的縱坐標(biāo)為正數(shù);x軸下方的點(diǎn)縱坐標(biāo)為負(fù)數(shù)。即第一、二象限及y軸正方向(也稱y軸正半軸)上的點(diǎn)的縱坐標(biāo)為正數(shù);第三、四象限及y軸負(fù)方向(也稱y軸負(fù)半軸)上的點(diǎn)的縱坐標(biāo)為負(fù)數(shù)。

反之,如果點(diǎn)p(a ,b)在x軸上方,則b>0;如果p(a ,b)在x軸下方,則b<0。 (2)y軸將坐標(biāo)平面分成兩部分,y軸左側(cè)的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);y軸右側(cè)的點(diǎn)的橫坐標(biāo)為正數(shù)。即第二、三象限和x軸的負(fù)半軸上的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);第一、四象限和x軸正半軸上的點(diǎn)的橫坐標(biāo)為正數(shù)。

(3)規(guī)定坐標(biāo)原點(diǎn)的坐標(biāo)為(0 ,0) (4

(5)

對(duì)稱點(diǎn)的坐標(biāo)特征:

(1)關(guān)于x軸對(duì)稱的兩點(diǎn):橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)。如點(diǎn)p(x 1 ,y 1)與q(x 2 ,y 2)?x1=x2

關(guān)于x軸對(duì)稱,則?反之也成立。如p(2 ,-3)與q(2 ,3)關(guān)于x軸對(duì)稱。

y?y?0?12

(2)關(guān)于y軸對(duì)稱的兩點(diǎn):縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。如點(diǎn)p(x 1 ,y 1)與q(x 2 ,y 2)?y1=y(tǒng)2

關(guān)于y軸對(duì)稱,則?反之也成立。如p(2 ,-3)與q(-2 ,-3)關(guān)于y軸對(duì)稱。

?x1?x2?0

(3)關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn):縱坐標(biāo)、橫坐標(biāo)都互為相反數(shù)。如點(diǎn)p(x 1 ,y 1)與q(x 2 ,y 2)關(guān)?x1+x2?0

于原點(diǎn)對(duì)稱,則?反之也成立。如p(2 ,-3)與q(-2 ,3)關(guān)于原點(diǎn)對(duì)稱。

y?y?0?12

第五篇:立體幾何證明的向量公式和定理證明

高考數(shù)學(xué)專題——立體幾何

遵循先證明后計(jì)算的原則,即融推理于計(jì)算之中,突出模型法,平移法等數(shù)學(xué)方法。注重考查轉(zhuǎn)化與化歸的思想。

立體幾何證明的向量公式和定理證明

附表2

頻道推薦相關(guān)范文:

201*.3.29幾何證明---基本公里定理本身的證明

立體幾何證明題公理定理集錦

李明波四點(diǎn)定理的平面幾何證明

淺談?dòng)孟蛄糠ㄗC明立體幾何中的幾個(gè)定理

選修4-1 幾何證明選講第2講 圓周角定理與圓的切線

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


幾何證明定理(精選多篇)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://www.7334dd.com/gongwen/381979.html
相關(guān)文章